
Journal of Statistical Physics, Vol. 76, Nos. 1/2, 1994 

Molecule Formation and the Farey Tree in the 
One-Dimensional Falicov-Kimball Model 

C. Gruber, ~ D.  Ueltschi ,  ~ and J. Jsdrzejewski  2 

Received October 12, 1993;final February 25, 1994 

The ground-state configurations of the one-dimensional Falicov-Kimball model 
are studied exactly with numerical calculations revealing unexpected effects for 
small interaction strength. In neutral systems we observe molecular formation, 
phase separation, and changes in the conducting properties; while in nonneutral 
systems the phase diagram exhibits Farey tree order (Aubry sequence) and a 
devil's staircase structure. Conjectures are presented for the boundary of the 
segregated domain and the general structure of the ground states. 
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1. INTRODUCTION 

The s tudy of  the general  proper t ies  of fermion systems, such as m e t a l -  
insulator  transit ions,  crystal  formation,  and t ransi t ions to mixed-valence 
states, on the basis of microscopic  models,  is a domain  of vigorous 
research. Among  the models  being considered,  growing a t tent ion  is being 
paid  to a simple model  p roposed  a lmost  a quar ter  of a century ago by 
Fal icov and Kimball .  (1) This model  was put  forward to describe m e t a l -  
insulator  t ransi t ions  in t rans i t ion-meta l  and rare-ear th  materials,  where an 
analysis of the exper imental  da ta  suggested that  these t ransi t ions are of 
purely electronic origin. 
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The first investigations of the Falicov-Kimball model, carried out by 
means of approximate methods, such as mean-field or coherent phase 
approximations, ~2~ led to contradictory results and reduced the general 
interest in the model. However, in 1986 Kennedy and Lieb c3~ and inde- 
pendently Brandt and Schmidt t4~ obtained rigorous results showing the 
existence of a phase transition at sufficiently low temperatures. They con- 
sidered the simplest version of the model with only one band and spinless 
fermions, later called the spinless Falicov-Kimball model. Even this sim- 
plified version has numerous physically sound interpretations. ~2" 31 In one of 
them, related to crystal formation, the system is viewed as consisting of 
quantum electrons hopping over a lattice and classical ions occupying 
some of the lattice sites. The interesting case occurs when the lattice 
consists of two equivalent sublattices and electrons are allowed to hop only 
from a site belonging to one sublattice to a nearest neighbor that belongs 
to the other sublattice. The only interaction is the on-site attraction (or 
repulsion) between electrons and ions and the hard-core repulsion between 
ions. 

If the densities are equal to 1/2, or equivalently, if the chemical poten- 
tials correspond to the hole-particle symmetry point (half-filled-band case), 
then it has been proved that in dimensions two and higher this simple 
interaction leads to an order-disorder transition as the temperature is 
varied.Ca. 4) 

In the low-temperature phase the ions arrange themselves into a peri- 
odic structure, where they occupy only one of the sublattices. An important 
point to achieve this remarkable result is the fact that, in distinction to 
other lattice fermion models, a study of the Falicov-Kimball model can be 
reduced to a study of tight-binding Schr/Sdinger equations in a variety of 
potentials. At each site these potentials assume only two values, say 0 or 

- U, that correspond to the absence or presence of an ion at this site. Let 
us underline that contrary to band theory, where the potential in the 
Schr6dinger equation is fixed, the potential is here a variable and the 
problem is to find that potential whose contribution to the partition func- 
tion is dominant (the so-called annealed problem). 

One consequence of this fact is that the model can be studied by com- 
paring the ground-state energies corresponding to certain classes of poten- 
tials (ion configurations), i.e., by constructing restricted phase diagrams for 
a finite or infinite system. Initially the method of restricted phase diagrams 
was applied to a two-dimensional system in ref. 5 and to a one-dimensional 
system in ref. 6. 

In recent years numerous papers devoted to the spinless Falicov- 
Kimball model have appeared. They have dealt mainly with the following 
topics: various generalizations of the first rigorous results (quoted 
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above), tT-t~ investigations of the segregation principle (first formulated by 
Freericks and Falicovt61), tlH31 investigations of the effective interaction 
between the ions, t14-17~ and attempts to find the general structure of the 
ground-state phase diagram of the one-dimensional system, in particular 
new candidates for low-temperature configurations of the ions. t6"~s~ We 
shall refer to the papers cited here in due course. 

This paper belongs to the last of the mentioned groups. It is organized 
as follows. In Section 2 we provide the reader with the relevant informa- 
tions, definitions, and notations. In Section 3 we begin our study of the 
ground states with the investigation of neutral systems. For such systems 
an interesting theorem has been obtained for large values of the coupling 
constant U, 16" 12) and this result was generally expected to be valid for all 
values of U. However, as we discuss in Section 3, the qualitative under- 
standing of this theorem suggests that it can no longer be correct for 
small U. Since the theorem was established using the canonical formalism, 
we start our analysis with the canonical ensemble. Furthermore, to have 
some idea about the structure of the ground states, we consider first finite 
but large systems for which we can use existing computer programs to com- 
pute explicitly the ground-state energies for all possible configurations and 
thus find the configuration with minimal energy. We then consider infinite 
systems and study all the periodic configurations with periods less than 
some specific values. This analysis will show that for sufficiently small 
coupling constant U there appear phenomena of segregation (phase separa- 
tion) and thus the grand canonical formalism is better adapted to the 
problem. In Section 4 we then describe the results obtained in the grand 
canonical formalism for neutral as well as nonneutral systems. Finally in 
Section 5 we summarize our observations, conclusions, and conjectures. 

2. D E F I N I T I O N S  A N D  N O T A T I O N S  

The object of this work is to study the ground-state properties of the 
one-dimensional spinless Falicov-Kimball  model. This model describes a 
system of itinerant spinless quantum fermions interacting with classical ions 
on a one-dimensional lattice A. Whenever the lattice has a finite number IAI 
of lattice sites we impose periodic boundary conditions. The Hamiltonian 
is 

= * Uw(x)a.*ax) Ha ~ (--a*a.~+l--ax+lax-- 
x E A  

(1) 

where a * x ,  ax are the creation and annihilation operators of itinerant 
spinless electrons and w(x)= 0 or 1 is the number of ions at the lattice site 
x. The total number of electrons Ne=Y'..~EA a.*a.~ and the total number of 
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ions (in the configuration w) N;(w)=~x~A w(x)  are the conserved quan- 
tities. The function w(x), x e A ,  is called the ion configuration. The elec- 
trons can hop only between nearest neighbor sites and the corresponding 
kinetic energy matrix elements are set to unity. Therefore in HA there is 
only one independent parameter expressed in these units: the electron-ion 
interaction U. 

For a given configuration w(x)  the Hamiltonian (1) is the second 
quantized form of the one-particle operator whose matrix elements are 

hx.,. = - t x ~ -  Uw(x)rx.,, (2) 

where 

{10 if Y = x + l  t~,. = -- (3) 
" otherwise 

In the following, when we speak of the spectrum of the configuration w we 
mean the spectrum of this one-particle Hamiltonian. The bands (gaps) in 
this spectrum are referred to as the bands (gaps) of the configuration w. 
The ground-state energy EU(w; Ne) of the system (1) corresponding to Ne 
electrons and the ion configuration w is equal to the sum of the Ne lowest 
energy levels of the single-particle Hamiltonian (2). 

Applying to (1) the unitary hole-particle transformation with respect 
to the ions, we obtain 

E(U)(w*; N~) = E(-U)(w; N~) - UN~ (4) 

where w*(x)  = 1 - w(x), while with respect the the electrons we get 

E(U)(w; Ne) = E ( -  U)(w; IAI - Ne) - UN~(w) (5) 

Therefore we can reduce the range of N~ and N; considered and arbitrarily 
fix the sign of U (in the sequel we drop the superscript U from E). We 
choose U >  0, i.e., the particles attract each other at the same lattice site. 

We study also the infinite systems in the thermodynamic limit. The 
limit is taken in such a way that the particle densities per site N~/IAI, 
Ni/IAI and the ground-state energy density E(w;Ne)/IAI  tend to the 
electron density pe, the ion density pi, and the ground-state energy density 
e(w~pe). For the periodic ion configuration w the Green function of the 
tight-binding Schrrdinger equation and consequently the density of states 
n(w), p, ,  and e(w; p~) can be determined exactly. (~91 However, the corre- 
sponding formulas contain the band edges of the spectrum of w, which are 
zeros of the polynomial whose order coincides with the period of w. At this 
point it is necessary to perform numerical calculations. 
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The problem we want to investigate is to find the ground-state configu- 
rations (g.s.c.), i.e., the zero-temperature phase diagram. In the canonical 
formalism one is given the electron and ion densities (Pe, Pi) and the 
task is to find the configurations ~ that minimize the energy E(w, N~), 
Ni(w)=Ni, or the energy density e(w, pe), pi(w)=p~. In the following 
sections we shall construct "restricted phase diagrams," which amounts to 
minimizing the set of functions e(w, Pc), where w runs over some specified 
class of admissible configurations, for example, the class of all periodic con- 
figurations with period smaller than some fixed value. Since the minimum 
of a set of convex functions is not necessarily convex, one has to take the 
convex envelope of the minimum. For those values pe where the convex 
envelope does not coincide with the minimum of the e(w, pe), the g.s.c, is 
then a mixture of two or more configurations. The configuration w of ions 
in the mixture Wl & w2 is defined as follows: the finite lattice A is parti- 
tioned into two parts A~ and A2; the restriction of w to A 1 and A 2 is wl 
and w2 with IA~I/IAI =~  and 

p~ = ~p~(w~) + (1 - a) p~(w2) (6) 

The thermodynamic limit is then taken, keeping a fixed. 
In the grand canonical formalism one is given the electron and ion 

chemical potentials (/~e,/~;) and the task is to find the configurations # that 
minimize the free energy density 

f(w; lz~, I~) = e ( w ;  ]Je) - -  #ePe(W'~ #e )  - -  ]2 iP i (W)  (7) 

Again we shall construct "restricted phase diagrams," which amounts to 
minimizingf(w;/le,/1/) over some class of configurations. In this case there 
is no need to take the convex envelope since the free energy density (7) is 
a concave function of the chemical potentials. 

In the following sections we shall consider special classes of configura- 
tions. It is useful to define them here and to introduce an appropriate 
notation. There are two translationally invariant configurations: the full 
configuration, denoted by + ,  where all the sites of the lattice are occupied. 
(p i=  1), and the empty configuration, denoted by - ,  with no ions (p,.=0). 
The unique band of the empty configuration extends from - 2  to 2 (while 
the band of the full configuration is translated by - U). At the Fermi level 
#r  the electron density is 

i if # r ~ < - 2  
p~(_; /aF)= - l  arccos(_/aF/2) if I/~FI ~ 2  

if ttr~>2 

(8) 
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and the corresponding ground-state energy density is 

e(_;lae)=~--n-l(g-p2r)  m if I~rl ~<2 (9) 
t o  otherwise 

A periodic ion configuration that does not belong to one of the two 
classes considered, with period q and p ions per unit cell (pi=p/q), is 
denoted by p/q. 

The unit cell of the crenel configuration { p/q } consists of p consecutive 
sites occupied by the ions, while the remaining q - p  sites are empty. The 
atomic most homogeneous configuration with pi=p/q is denoted by [p/q]. 
In this configuration the ions in the unit cell are distributed in such a 
manner that the distances between two consecutive ions are either d or 
d +  1 with d<~q/p < d +  1. Furthermore, the distribution of the distances d 
and d +  1 has to be most homogeneous/~2'2~ More precisely, with p 
relatively prime to q, the position of the ions in the unit cell is given by kj 
solutions of the equations pkj = j mod q, j = 0, 1 ..... p - 1. 

Similarly we define the n-molecule most homogeneous configuration 
[p/q],, n >/2, where p~=p/q and p is a multiple of n. This configuration is 
defined in the same way as [p/q], but replacing "ion" by "n-molecule" that 
consists of n consecutive ions. More precisely, with p/n relatively prime 
to q, the position of the ions in the unit cell is given by kj solutions of 
the equations (p/n)kj=jmodq, j = 0 ,  1 ..... p - 1 .  In particular, [n/q], is 
identical with {n/q}. In the following we denote the n-molecules by H,. 

The following example illustrates the above definitions: for p = 6 and 
q = 10 the unit cell for the crenel configuration {6/10} is [ . . . . . . . . . .  ], for 
the atomic most homogeneous configuration [6/10] it is [ . . . . . . . . . .  ], i.e., 
it is the extension of the unit cell corresponding to [3/5], for the 
2-molecule most homogeneous configuration [6/1012 it is [ . . . . . . . . . .  ], 
and for the 3-molecule most homogeneous configuration [6/1013 it is 
[ . . . . . . . . . .  ]. Finally, as an example of a periodic configuration 6/10 that 
is not a member of the above-mentioned classes we can take the one with 
the unit cell [ . . . . . . . . . .  ]. The list of all the periodic ion configurations 
that enter into our phase diagrams is given in Table I. 

The only aperiodic configurations that we shall consider are those that 
constitute a mixture of two or three periodic configurations described 
above. In particular, a mixture of the full and empty configurations is the 
so-called segregated configuration (6) where all the ions clump together. This 
segregated configuration is the g.s.c, when Pe/P~ is sufficiently small 
(Section 4). Other mixtures of the form w & - ,  where w is a periodic con- 
figuration, will play an important role in our studies of neutral systems 
(Section 3). The density of states fo the mixture w & - is 

n=(#) = tin(w; #) + (1 - ct) n( - ; ~) (10) 
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where 

n ( - ; / a )  = rc -~ Re(4- /a2)  -t/2 (11) 

and n(w; ~) is given in ref. 19. Consequently, the electron and ion densities 
are 

pe=ctp~(w)+(1--ot)p~(--), p,=~p/q (12) 

where 

pe(w)= p~(w; l~F)= I'f~ n(w; t~) dl~ (13) 

and P e ( -  ) is given by Eq. (8). Similarly, the energy density of this mixture 
is 

e= cte(w) + (1-ct) e ( -  ) (14) 

where 

e(w)=e(w;l~r)= - #n(w;l~)dlt (15) 

and e ( - )  is given by Eq. (9). 
The mixture of the configuration w =p/q and the empty configuration 

is denoted p/q & - or p/q & vacuum (if the Fermi level # r  is smaller than 
- 2 ) .  

As a rule our considerations and our results refer to the infinite 
system. Only the preliminary results of Section 3, necessary to guide the 
future analysis and to see if finite-size effects are important, were obtained 
for finite systems (Fig. 4 and Tables III, V, and VI). 

3. N E U T R A L  S Y S T E M S .  P H A S E  D I A G R A M S  IN T H E  
C A N O N I C A L  E N S E M B L E  

In this section we study the ground-state properties of the neutral 
systems in the canonical ensemble. If the system is finite we thus take 
Ne = Ni = N and we are interested in the configurations ff that minimize 
the energy E(w; N). 

If the system is infinite, then Pe = Pi = P and the problem is to find the 
configurations ~ that minimize the energy density e(w; p). We shall first 
consider only periodic configurations with p =p/q, p and q being relatively 
prime integers. 
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For large U and rational densities it was first conjectured t6~ and then 
rigorously proved that the g.s.c, is the most homogeneous configuration of 
atoms. ~'-) Since this result was established using the perturbation series of 
e(w) in powers of U-~, the question naturally arises whether the restriction 
to large U is technical or fundamental. Until now it has been usually con- 
jectured that such a theorem should be valid for all values of U. (12"211 

Indeed, the results of Kennedy and Lieb (3) and Brandt and Schmid( 41 for 
the half-filled-band case (p--  1/2) and the numerical studies of Freericks 
and Falicov (6) for p = 1/2, 1/3 seemed to support this conjecture. 

However, the analysis of a finite number of ions and electrons on an 
infinite lattice (with Ne--Ni),  while providing a qualitative explanation of 
this result, suggests also that it cannot remain valid for small U. Indeed, for 
large U and to leading order in U-  ~ the energy of the neutral system is given 
by an effective two:body potential of the form 2(d+ 1 ) e x p [ - 2 ( 2 d +  1)], 
where d is the distance between the ions. ~6) In other words, for large U an 
equal number of ions and electrons will form neutral atoms which repel each 
other with an effective two-body potential that is convex and decreasing. 
Using the result of Hubbard, (2~ we thus conclude that for large U the g.s.c. 
of the neutral system with a finite density should be the most homogeneous 
configuration. 

On the other hand, one can easily check that for U ~< 2/x/~ the energy 
of the neutral 2-molecule is smaller than the energy of two neutral atoms 
that are infinitely separated. Indeed the ground-state energy E a'~ of the 
neutral atom is 

E at~ - (4+  U2) 1/2 (16) 

while the energy E 2"m~ of the neutral 2-molecule is 

f U3 - 2 UTZ_ 1 if U~>2 
E 2-molecule 

) ( U + 2 )  2 
[, U - + i  if U~<2 

(17) 

Moreover for U ~< 2 the 2-molecule has only one bound state. 
More data are contained in Fig. 1, where the energy of two ions and 

two electrons on the infinite lattice is shown as a function of the distance 
between the ions.for different values of U. For large values of U the ground 
state consists of two neutral atoms at infinite distance. On the other hand, 
for small values of U this happens when one 2-molecule with one bound 
electron and one diffusion electron is formed. Similarly, Fig. 2 shows that 
the ion configuration that minimizes the energy of three ions and three 
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electrons depends on the value of U. There are three kinds of ground states: 
(1) three neutral atoms at infinite distance (U large), (2) one 2-molecule 
with one bound state and one neutral atom at infinite distance, and (3) one 
3-molecule with one bound state (U small). 

Finally we can see in Fig. 3 that the energy between two 2-molecules 
(and four electrons) presents the same properties as the energy between 
two ions: for sufficiently large U it is convex and decreasing and thus the 
ground state consists of two 2-molecules infinitely separated, while for U 
sufficiently small the ground state consists of one 4-molecule with one 
bound state. Although we have not checked it, we expect that the energy 
between two n-molecules (and 2n electrons) has similar properties. To con- 
clude the above considerations of neutral systems with a finite number of 
ions, let us find the n-molecule with the lowest energy per ion as a function 
of U. The result is shown in Table II. We note that for each n-molecule 
there is an interval of U where its energy is minimal. Moreover, in this 
interval the n-molecule has only one bound state. We then conjecture that 
for given U, the neutral system with zero density of particles will form 
n-molecules, with n = n(U), which are infinitely separated. 

The above results suggest that, for sufficiently small U, the neutral 
systems with nonzero density might realize their ground state by forming 
n-molecules, n > 1, that are most homogeneously distributed. To test this 
idea we have considered a finite system of 512 sites and studied the restricted 
phase diagram for configurations of the form [p/q],,. For example, for 
p i =  9/128 (Ni=  N,,= 36) we have considered the ion configurations whose 
unit cells are displayed in Table III. The results are given in Fig. 4. To 
determine the finite-size effect, the transition line between the atomic con- 
figurations H~ and the 2-molecule configurations H2 has been computed 
for a system of 200 sites and no significant difference was observed. We also 

Table II. n -Molecu les  wi th  Smallest Energy 
per Ion versus U 

U interval Type of n-molecule 

(1.155, oo) Hi 
(0.511, 1.155) H 2 
(0.280, 0.511 ) H 3 
(0.175, 0.280) H4 
(0.119, 0.175) H5 
(0.086, 0.119) tt6 
(0.065, 0.086 ) H7 
(0.051,0.065 ) H 8 
(0.041,0.051) //9 
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Table III. Periodic Configurations for p=91128 Taken into Account in Fig. 4" 

Type of molecule Unit cell 

n I 

H2 

H3 
H4 

(,)(13o)(-)(13o)(,)(13o)(,,)(14o)(,,)(13o)(-)(13o) 
(-)(13o)(-)(13o)(,)(14o) 
(2,,)(26 o)(2 ,)(27 ~)(2 ,,)(26 o)(2,)(27 o)(2 ,)(26 o) 
(2,)(270)(2,)(260)(2,)(2?0)(2=)(260) 
(3 -)(390)(3 ,)(400)(3 ,)(400) 
(4~176176 
(4 ~ o)(4,)(53 o)(4,)(53 o)(4,)(53 o) 

a In our notation, for instance (3 .) stands for three consecutive sites occupied by ions, while 
(3 o) stands for three consecutive empty sites. 

compared  the energy of the finite system with the energy of the cor respond-  
ing periodic  configurat ion of the infinite system (e.g., see Tables V and VI). 
F r o m  this analysis we can thus conclude that  the usual conjecture con- 
cerning the ground state of a neutral  system (ment ioned at the beginning 
of this section) cannot  be correct:  for sufficiently small U and sufficiently 
small densities the most  homogeneous  configurat ion of a toms cannot  be 
the ground-s ta te  configuration.  

Of  course from this analysis we cannot  conclude that  the molecular  
configurat ions [p/q],, are the true g.s.c. Therefore for some special values 

1/4- 

~/s. o ~ H,-, 

1/7. 

o 
~ 1/lO 

1/20 

0 , 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 
U 

Fig. 4. Restricted phase diagram with respect to n-molecule most homogeneous configura- 
tions, n ~<4, over the lattice of 512 sites. The points are special values discussed in the text. 
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of U and /9 (Fig. 4), and for an infinite system, we have computed the 
energies of all the periodic configurations with period smaller than or equal 
to some Q. The configurations ffp with the smallest energy and their energy 
are given in Table IV. 

Clearly, for sufficiently small U and p the most homogeneous con- 
figurations of atoms or molecules are not the g.s.c. These results show that 
Theorem 1 of Freericks and Falicov (6) is not always correct: for p =p/q 
there exist periodic configurations whose energy is smaller than the energy 
of atomic configurations and whose period is larger than q (similar results 
hold true for smaller values of U). However, we shall see in the sequel that, 
if the true g.s.c, is periodic, then it is given by the construction of Freericks 
and Falicov (61 and this remains true in the nonneutral case (Pe :~ P~). 

Furthermore, Table IV shows that for small densities and small U the 
particles tend to arrange themselves into molecules (as was the case at zero 
density) and lead us to think that the g.s.c, could be mixtures of periodic 
configurations of molecules and the empty configuration. To check this 
guess we have considered a system of six ions and six electrons on a lattice 
of 42 sites, i.e., p = 1/7. The energies of all ion configurations have been 
computed and the g.s.c, selected (see Table V). We see that the g.s.c, of this 
finite system ( p = l / 7 )  are the mixtures of { 2 / 7 } & -  or { 2 / 6 } & - .  
However, Fig. 4 suggest that the mixture of {3/6} & -  could come into 
competition if the lattice were sufficiently large. We have thus computed 
the energies of these three mixtures for a lattice of 420 sites and for the 
infinite lattice (see Table VI). 

Table IV. Canonical Restricted Phase Diagram for an Infinite Chain 
and Special Values of (U, p)a 

U p Period ~<Q Unit cell Energy Energy ( [ I /p ] )  

0.10 1/5 20 ooooo --0.378 561 
0.10 1/6 24 oooooooo(16o)  --0.321 413 
OAO 1/7 21 ooo(18o) --0.278 539 
0,20 1/6 24 oooooooo(16o)  -0 .325073  
0.20 1/7 21 e e o o o o o e ( 1 3 o )  -0.281 342 
0.50 1/5 20 ooooo --0.401 926 
0.50 1/6 24 e o o o o e e ( 1 7 o )  -0 .338876  
0.50 1/7 21 e e o o o o o e ( 1 3 o )  -0 .292 371 
0.54 1/6 18 o , o o o o o ( l l  o) --0,340847 
0.60 1/6 18 oooooo --0,344 206 
1.00 1/6 24 oooooo -0.371 472 
1.00 1/7 21 , o o o o o o  --0,318 390 

--0.321 386 
- 0.278 511 
-0 .324 972 
-0.281 238 

-0 .338 655 
-0.291 988 
-0 .340 815 

The ground-state configurations were selected among all the periodic configurations whose 
period does not exceed Q. 
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Ground-State Configurations of Neutral System 
with 42 Sites and Density p=  1/7 

U Unit cell Energy 

0.1 e.(5o) co(5 o) o-(26 o) --0.278 265 
0.2 oo(4o) oo(4o) oo(28 o) -0.281 258 

These new and surprising results show that for sufficiently small values 
of U and p the g.s.c, is indeed a mixture of some periodic configuration 
with the empty configuration. We have thus looked at the restricted phase 
diagram for all configurations that are mixtures of the empty configuration 
and a periodic configuration with period q~< 7 for p = 1/5, 1/6, 1/7 and 
period q ~< 10 for p = 1/10. Note  that, in particular, the most homogeneous  
configurations are among  those considered. Table VII shows that the 
configurations minimizing the energy are mixtures of {p/q} & -  (i.e., 
crenel configurations followed by the empty configurations) or the most  
homogeneous configurations of atoms. This observation suggests we 
restrict our attention to those configurations that are either most  
homogeneous or mixtures of the form {p/q} & - .  We have thus construc- 
ted the restricted phase diagram for all configurations that are either most 
homogeneous or mixtures of {p/q} & -  with q ~< 10. This has been done in 
the range U~ [0.01, 1.2], p ~ [0.1, 0.3], taking steps AU= 0.05, Ap = 0.005. 
We have also considered the values of p (in the above range) of the form 
a/b with b~<29. In the domains that have not been expected to appear 
(e.g., {3/6}, between {2/6} and {2/7}) finer steps were used: A U = 0 . 0 1 ,  

Table VI. Energy Density of the Mixture {p/q} & -  for the Neutral System 
with Density p=  1/7, for a Lattice of 420 Sites, and for an Infinite Lattice, 

Compared with the Energy Density of the Atomic Most Homogeneous 
Configuration [1/7] 

U Configuration Energy (L = 420) Energy (L = o~ ) 

0.1 {2/7} & -  -0.278 580 -0.278 679 
{3/6} & - -0.278 538 -0.278 535 
{2/6} & - -0.278 500 -0.278 500 

[ 1/7] -0.278 511 
0.2 {3/6} & -  -0.281 470 -0.281 490 

{2/6} & -  -0.281 452 -0.281 455 
{ 2/7} & - -0.281 441 -0.281 439 

[ 1/7] -0.281 238 
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Table VII. Restr icted Phase Diagram for Mixtures of the Form p/q & -  
( Inf in i te Latt ice) 

p U=O.1U=O.2U=O.3U=O.4U=O.5U=O.6U=O.7U=O.8U=O.9U=I.OU=I.1 

1/5 {2/5} {2/5} H~ H, H, H, H, H, H, H, Ht 
1/6 {2/6} {2/6} {2/5} {2/5} {2/5} {2/5} {2/5} Hi Hi Hj Ht 
1/7 {2/7} {3/6} {2/6} {2/6} {2/6} {2/6} {2/5} {2/5} {2/5} H~ Ht 
1/10 {3/9} {3/8} {3/8} {2/8} {2/7} {2/7} {2/7} {2/6} {2/6} {2/6} Ht 

Ap=0.001. Finally, the transition lines separating different domains of 
2-molecules have been computed explicitly. The results are summarized in 
Fig. 5. 

To achieve a better understanding of the transition we have fixed 
U=0.6  and we have found that for ps [0 .14 ,0 .15]  the mixture of 
{2/5} & {2/6} & -  has lower energy than {2/5} & -  or {2/6} & - .  
Similarly for p c  [0.18,0.19] the mixture {1/5} & {2/5} & -  has smaller 
energy than {1/5} & -  or {2/5} & - .  Therefore the transition lines should 
be replaced by transition boundaries with mixtures of one or two periodic 
molecular configurations and the empty configuration. Our investigations 
of the grand canonical phase diagram, described in the sequel, suggest that 
between two domains [p/q],  & -  and [p'/q'],, & -  there is the domain 
[ ( p + p ' ) / ( q + q ' ) ] , & -  and so on. On the other hand, between two 
adjacent domains [ p / q ] . & -  and [P'/q'].+l & -  there is a mixture 

[P/q]. & [P'/q'].+ l & - .  

p : tP/ql : i 
I ' I2/4]2] [3/e13 

o.~o ~ ~ _  i . . . . .  

/ . . . .  

0 . 1 5  

0.10 
0.2 0.4 0.6 0.B 1.0 U 

Fig. 5. Restricted phase diagram of the infinite neutral system in the canonical ensemble. All 
the mixtures of the form {p/q} & - ,  with q~< 10, and the atomic most homogeneous con- 
figurations whose period does not exceed 30 were taken into account. The dots correspond to 
the entries of Table VII. The configurations found in the grand canonical analysis are located 
at the vertical segments. The fat vertical segments represent the mixtures { 1/5} & {2/5} & -  
and {2/5} & {2/6} & - .  The domains labeled 1 and 2 are [4/9]4 and [4/8]4, respectively. 

822/76/I-2-10 
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Let us summarize our observations. For neutral systems (pc=  p i =  p) 
and for U~< 2/x/~ there is a critical density Pc(U) such that for p > pc(U) 
the g.s.c, is atomic most homogeneous (as for U >  2/x/~ ) and thus the 
g.s.c, varies from point to point. On the other hand, for p < pc(U), larger 
and larger molecules appear, and the g.s.c, remains a mixture of the 
periodic n-molecule configuration [p/q], and the empty configuration, 
over a certain range of densities. As p decreases, the period q increases 
discontinuously until a value where a mixture [p/q](, + 1 )&-  takes over. 

Furthermore, if the g.s.c, is atomic most homogeneous, then the 
system is an insulator, while if the g.s.c, is a mixture, the system is a con- 
ductor. We thus have a transition from an insulator to a conductor as U 
decreases. 

We now give an interpretation of our observations. We have already 
noticed that a finite number of ions and electrons on an infinite lattice will 
tend to make n-molecules (with one bound state only) which repel each 
other. For finite densities pi = pe = p we would like to understand why the 
g.s.c, is a mixture of a periodic and the empty configuration and what is the 
physical mechanism responsible for the period q. Looking at the band 
structures of the periodic configurations {n/q}, we notice that the Fermi 
level # r  of the mixture {n/q} & - ,  corresponding to p, is in the gap 
between the first two bands (Fig. 6) and thus we have 

Thus 

n 1 
p , = p = ~ - ,  pe=p=O~--+(1--o~)pe(--;#F) (18) 

q q 

1 p n - 1  
p~"/q} = c o - = - ,  p , ( - ; # v ) = p - -  (19) 

q n n - p q  

u u 

0.0 ~ 12/5) - o.g 
0.8 0.8 

0 , 7  0 . 7  

0,6 0,6 

0.5 0.5 

o .4 ~ o .4 

0.3 ~ 0.3 

0.2  :=~ - -  0.2 

0.1_: . . . . . .  0.1.r ' 

electron chemical potential 

i ~  ~ �9 __-_ 

-1 .I~ -1 - U . ~  U O.b  1 1 . ~  

electron chemical potential 

Fig. 6. Band structure of the configurations {2/5} and {2/6} for U between 0.1 and 1.0. The 
vertical lines show the location of the Fermi level for the densities p = 1/10, 1/7, and 1/6. 
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i.e., there is one electron per molecule in a bound state associated with the 
periodic ion configuration, while the remaining p(n-  1 )In electrons are in 
the extended states associated with the empty configuration of the ions. 
The corresponding energy density of the system is 

e=P(qe '~)({n/q}) - -2(n--1)~ -) (20) 

where e~)({n/q }) is the energy density of the first band of the configuration 
{n/q} and y = np(n- 1 )/(n- pq). Given p and n, the first term decreases as 
q increases, which can be seen as a consequence of the effective repulsion 
between n-molecules due to the bound electrons. On the other hand, the 
second term increases as q increases, which reflects the fact that the elec- 
trons in the empty space tend to increase the volume occupied. Therefore 
the period q that minimizes the energy density results from the competition 
between the effective repulsive force between the molecules and the pressure 
exerted by the electrons in the empty configuration of the ions. 

4. P H A S E  D I A G R A M S  IN T H E  G R A N D  C A N O N I C A L  
E N S E M B L E  

To obtain a better understanding of the phases at zero temperature, 
and to avoid the difficulties associated with mixtures that one has to con- 
sider in the canonical approach, we shall now investigate the infinite system 
in the grand canonical formalism. The problem is the following: given the 
chemical potentials (Pc,/t;), what is the configuration �9 that minimizes the 
free energy density f(w;/~e,/ai)? 

In the following we consider only periodic configurations and we con- 
struct the phase diagrams restricted to periodic configurations with period 
smaller than or equal to 10, for interaction U taking values 0.6, 0.4, 0.2. 
Using the symmetry properties and the known results, c15~ we can restrict our 
investigation to the region/~e~ I - - 2 -  U, - U/2], laie [ -  U/2, 0]. We have 
thus constructed the restricted phase diagrams in the following manner: 
for fixed /~ and given w, the free energy is a linear function o f /~ .  We 
can therefore calculate exactly the interval of /~ for which the configuration 

yields the minimum of the free energy (among all the configurations 
whose period does not exceed 10). This was done taking steps A#~ = 0.05 
and A/ae=0.025. in the case U=0.2.  Near the endpoint (#~=/~*) and near 
the transition lines finer steps were taken. The resulting phase diagrams are 
presented in Figs. 7, 9, 11, and 12. To study these diagrams we have also 
computed the band edges of all configurations that appear in Fig. 7 and we 
have marked the intervals of/~e in which they are g.s.c. (see Fig. 8). 
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-0.I0 

-0.15 

-0.20 

-0.25 

-0.30 

i a/to 

U - 0 . 6  t / 9  

~ 3 ~ _ / '  l~L~ ~/io 
* ' / 4 ~ f  ~/,o 

~ ~ }  :~/i ~ ~/? 

38 Z ~ _ ~ 3 7 ~  Z5 3? 

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 --]~e 

,14/• 318 

-o.o~ ,~,.,,'~r u = o . a  

-0.o4 I ~ ~  ~/7 
1~ I~V~. / - -  o/,o 

-o.o5 ~ [ ~ / ~ _ , o  ~/,, 
-o .oo  

-0.07 -- ~ / 2/a 517 

-o.o8 ~ I , / ~  

-0 .09  
l 3/7 L 

- 0 . 1 0  ~ } 4 / o  
I t I I I I 

-2 .0  -1.8 -1.6 -1.4 -1.2 -1.0 -0 .8  -0 .6  ]-~e 

Fig. 7. Resthcted phase diagram of the infinite chain in the grand canonical ensemble. All 
the periodic configurations whose period does not exceed l0 were taken into account. In the 
lower part of the diagram p/q indicates the electron density. In the different domains p/q 

indicates the ion density. For p~=p/q only pi=fi/q appear. 
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Pi Pe 

. . .  

3~  
4~  

6+9 
3/7 
4/7 
5/7 
2~  

4~  
3~ ~lS 

5re 
S~ 
lt3 lz3 
7.n 
3/I0 3/10 
4110 
SflO 
6/t0 
,?.rt 
~'t 
4ft 
1/4 1/4 
2/4 
2,~ 219 
3~ 
4/9 

2,S 

. 

tR 

2/10 1110 
3/10 

-2',5 -1'.5 -i -d.5 
energy 

Fig. 8. Bands of the g.s.c, that appear in the grand canonical phase diagram (Fig. 7) for 
U = 0.6. The continuous horizontal lines mark the extents of the bands, the dashed segments 
the p,, extents of the corresponding g.s.c. 

Our analysis of the restricted phase diagrams, together with the infor- 
mation on the band structure, shows that the (pr p;) plane is divided into 
three main domains: D + ,  where the full configuration is the g.s.c.; D _ ,  
where the empty configuration is the g.s.c.; and D, where the g.s.c, is dif- 
ferent from the full or empty configuration. In the range Pe ~< - U - 2  we 
already know r that for p i > 0  the g.s.c, is the full configuration, for p i < 0  
the g.s.c, is the empty configuration, and for pi = 0 all configurations have 
the same energy. For - U -  2 < pc ~</~*, where p* < - 2 (see Fig. 12), the 
domains D+  and D _  are separated by the curve 

f (  + ; #~, #,)  = f ( - ;  Pe, #,)  = 0 (21) 
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i.e., 

n#, = - (4 -/~2) 1/2 _/~, arccos( - /~, /2)  

/~, = p, + U 
(22) 

A point (Pc, ]'~i) o n  this curve corresponds to a mixture of the full con- 
figuration with electron density 

Pc( +,/~e) = n - l  arccos( - / ~ / 2 )  (23) 

and the empty configuration with pe(- - ; Iae)=O (vacuum). This is the 
so-called segregated configuration, in which all the ions clump together. 16) 
Along the curve (22) we have 

Pe/Pi <~ Pc( "q- ; ~e* ) (24) 

In other words, for densities pe and Pi satisfying inequality (24) the g.s.c. 
is the segregated configuration. The problem of determining the value of p* 
will be addressed later. 

Figure 8 shows that for each configuration �9 appearing in the phase 
diagrams (Fig. 7) the Fermi level is located in a gap of the corresponding 
spectrum. This property has also been observed for U=0.4,  while for 
U=0.2  it does not seem to be true, since the boundary between two 
domains with Pe =P/q and pi=p'/q,  (p '+ 1)/q, is not always a straight-line 
segment. However, we have checked that this property is indeed satisfied 
when we consider configurations with larger periods. 

Figure 7 shows that the domain D consists of connected subdomains 
D~p,.o, I characterized by some periodic configuration of the ions and by a 
fixed density of electrons Pe (since the Fermi level is in the gap). We note 
that for given densities (p~, PA, if there is a periodic g.s.c, corresponding to 
this density, then it is associated with one connected domain D~p,.p,~. This 
is a consequence of the fact that the free energy surface is concave and at 
zero temperature it is piecewise affine. It turns out also that the configura- 
tion of the ions can be determined by the following procedure given by 
Freericks and Falicov~61: 

Let pe=p/q, with p relatively prime to q and pg=p~/q, where p~ may 
not be relatively prime to q. Define the integer kj by the relation 
pkj = j mod q, j = 0, 1, 2 ..... Then the position of the ions in the unit cell is 
given by k i with j - -  0, 1, 2 ..... p i -  1. 

The following structure of D is remarkable: the union Dp, of the 
domains D~p,.p,j corresponding to the same electron density pe=p/q 
constitutes a connected region. In this region the ion density takes on the 
values p'/q, ( p ' + l ) / q  ..... p"/q, for some p' and p">~p' (see Fig. 9). 
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Fig. 9. Domains Dp, with Pe = 3/8, 2/5, 3/7, and 4/9. 

Moreover, the unit cell of the configuration associated with the ion density 
Pi = (P + 1 )/q can be obtained by adding one ion to the unit cell of the con- 
figuration associated with p~=p/q. 

Another property of D is related to the observation that the domains 
D,, where the ion configurations consist of n-molecules with fixed n are in 
general connected regions whose size decreases as n increases. There is a 
relatively large domain D 1 corresponding to neutral atoms (pe=p~=p) 
with p ranging from some pmi.(U) to 1 -pmi , (U) ,  a smaller domain D2 
corresponding to 2-molecules with pf = 2pc, and consecutively domains D,  
corresponding to n-molecules, where n = 2 , 3  ..... N(U), with pi=npe 
(i.e., in all the domains D,  there is one electron per molecule). In each 
domain Din, m = l  ..... N(U), the ion density satisfies the inequality 
p(,,~)( rain. U)<~ Pi ~ P~'aJx(U). Furthermore, the minimal value p ~ ( U )  is zero for 
all m between some n(U) and N(U) [in the cases considered we had 
n(U)= N(U)-1]  and for those m the boundary between D,, and the 
vacuum (p~ = p~ = 0, i.e.,/~e ~< - 2 )  is linear. Between two domains D,  and 
D,,+ 1 the periodic configurations are such that their unit cells contain 
n- and (n + 1 )-molecules only. Between D,, and the vacuum the unit cells 
consist of atoms and holes followed by a sequence of empty sites, while 
between D,, and the full configuration the unit cells consist of atoms and 
holes followed by a sequence of occupied sites. 

We note also that all the domains Do, (with a given electron density) 
that appear in.the restricted phase diagrams follow the Aubry sequence 
(Farey's tree, Fig. 10) t2z) with respect to pe and exhibit a devil's staircase 
structure with respect to their size (Fig. 11). 

We therefore arrive at the conjecture that to all electron densities 
between zero and one there correspond, according to the Aubry sequence, 
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Fig. 10. Farey tree (or Aubry sequence) for electrons. 

the domain Dp, which present a fractal structure known as the devil's stair- 
c a s e .  (23) 

Similar observations can be made with respect to the structure of the 
domains D,, of n-molecules. The ion densities in these domains appear to 
follow the "n-molecule Aubry sequence," which is similar to the Aubry 
sequence, but starts with O/n and n/n and one has to consider rationals p/q 
with p = 0 rood n (see Fig. 10). This property can be understood as result- 
ing from an effective two-body interaction between n-molecules that is con- 
vex and decreasing (as was the case for the effective two-body interaction 
between the atoms for large U). However, because of the effective k-body 
interaction, we do not have the exact devil's staircase of Burkov. (22) In the 
neutral case this effect was already observed in ref. 18, where the periodic 
g.s.c, up to period 6 and for large U was studied. To check the above 
conjecture we have taken into account some periodic configurations with 
period larger than 10. The results are shown if[ Fig. l l .  

An inspection of the phase diagrams (and Fig. 12) yields a more 
detailed picture of the neutral case discussed within the canonical for- 
malism. For U < 2 / x / ~  the domain corresponding to nontrivial neutral 
configurations (Pc = P;) consists of the domain D~ ending at the point B, 
together with the curve AB, boundary between the empty and the periodic 
configurations for /~e>~-2. .Along the curve AB the density increases 
monotonically from zero to Pmi,(U). At each point on this curve the g.s.c. 
is a mixture [p/q],&- or [p/q],& [p'/q']~+~&-. Furthermore, at 
each point the density is different (because of the weight of the vacuum, not 
because of the periodic g.s.c.). In the domain D~ the density is piecewise 
constant, increasing from Pmin(U) to 1--Pmi,(U), with a devil's staircase 
structure. The results for Pe = Pi and U = 0.6, 0.4, 0.2 have been reported in 
Fig. 5. 
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We conclude this section with an argument leading to an equation for 
/q*, the Pe coordinate of the point where the coexistence line of the empty 
and full configurations joins the domain D. The reduced phase diagrams 
show that for / ~ e E [ / ~ * , - 2 ]  the boundary of D with the vacuum 
(p,,=pi=O) is piecewise linear and corresponds to the configurations of 
the form [n/oc],,. On the other hand, our considerations in the canonical 
formalism have shown that for a finite number of ions the g.s.c, of a neutral 
system consists of n-molecules (where n is U-dependent) with one bound 
electron and n -  1 diffusion electrons. For /~ < - 2  there is no diffusion 
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Fig. 11. Test of the conjecture regarding the Aubry sequence and the devil's staircase. 
(a) U=0.6,  (b) U=0.6,  (c) U=0.2,  (d) y~ extents of the domains contained in D I. 
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-2-u ~: - z  

o U<2/J-  

~e 
Fig. 12. The region of the (,%, ,uj) plane where the system is neutral (p, = P~). In the hatched 
area the g.s.c, are periodic, while at the curve AB the g.s.c, are mixtures of periodic configura- 
tions with the empty configuration. 

electrons and we then have only n-molecules with one electron. The free 
energy per ion is thus 

ECo "~ - # e  

f (H, , ;  #~, la~) = - -  #, (25) 

where ECo ") is the energy of the n-molecule ground state. On the other hand, 
the free energy of the vacuum is zero. Therefore the boundary  of the 
vacuum domain (for /a~ ~< - 2 )  is given by the concave envelope of the 
functions of pc, 

f ( + ;  p~, p~) = 0 ,  f ( H , ;  p~, p~) = 0, i.e., Ul"~=(E~o") -~) /n  (26) 

For p c = - 2  the value n(U) that corresponds to the minimum of the 
sequence (E(o ") + 2)/n is equal to the number  of ions in the molecule at zero 
density (Table II). Since the function given by f ( H , ; # e , / ~ , - ) = 0  has the 
slope - 1/n, it is sufficient to construct the concave envelope of the func- 
tions given by" Eq. (26) with n>~n(U). These functions are plotted in 
Fig. 13. In particular it appears that for U~> 2.65 the value of #* is deter- 
mined by f ( H  l ;/~e, #,.) = 0, i.e., 

/~i= - ( 4 +  U2)1/2--/~e (27) 
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which together with Eq. (22) gives, for U>~ 2.65, the following equation for 
~*: 

(4 + U 2 ) 1/2 = U + ( 1/rt) { [ 4  - (/~* + U )  2 ] t/2 

- (/~* + U) arccos[(#* + U)/2] } (28) 

Therefore the line of coexistence between the full and empty configura- 
tions (i,e., the segregated configuration) appears for p~ in the range 
( - 2 -  U,/~*). The corresponding densities given by (8) and (12) are 

Pi p~ = -- arccos[ - (/~e + U)/2] (29) 

Consequently the maximum b(U) of the ratio pe/p~ is given by 

1 & ~< - arccos [ - (/~,* + U)/2] = b(U) (30) 
pi rc 

which together with (28) yields for U~>2.65 the following equation for 
b(U): 

2 
(4+ U2) m -  U = - s i n [ n b ( U ) ]  + 211 - b ( U ) ]  cos[nb(U)] (31) 

For U--* oo the leading term in the asymptotic expansion of b(U) is 
1 - (3/~2U) t/3. The plot of b(U) is shown in Fig. 14 together with the upper 
and lower bounds derived by Brandt. c~3~ To the precision of Fig. 14, the 
curve obtained by Freericks and Falicov ~6J almost coincides with our curve 
and only a few points have been reported. 

Finally we add a remark concerning the canonical phase diagrams 
obtained by Freericks and Falicov. ~6) Let us take U =  0.6. For the densities 
pc= 1/3, p~= 1/2 the unit cell of the g.s.c, in ref. 6 is [ . . . . . .  ]; the energy 
density of the corresponding g.s.c, is equal to -0.667401. We found that 
the even mixture [ 1 / 3 ] & [ 2 / 3 ]  has the energy density -0.668167. 
Similarly, for the densities pc= 1/2, p ;=  1/3 the unit cell of the g.s.c, in 
ref. 6 has the length 6 and consists of two occupied sites separated by 
one empty site, the other sites being empty. The energy density of the 
corresponding g.s.c, is equal to -0.753835~ We found that the mixture 
[ 1/2] & -  has ~he energy density -0.754651. 

In conclusion, to be physically meaningful, an incoherent phase 
diagram [in the plane (Pc, U) and for fixed Pi] must take into account 
mixtures of configurations with different ion densities. The same remark, as 
we have already seen, applies to the neutral case. 
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5. C O N C L U S I O N S  

Our analysis of the zero-temperature restricted phase diagrams of the 
spinless Falicov-Kimball model has revealed several new and surprising 
effects. 

In the case of neutral systems we have seen that for U > 2/x/~ the 
ground-state configuration is, as expected, atomic most homogeneous and 
the system is an insulator. However, for U <  2/v/3 this remains true only 
for densities p which are not too small or not too large. Indeed there is a 
critical density pc(U) such that for p<pc(U) [or p > l - p c ( U ) ]  the 
ground state presents entirely different properties. We observed three new 
phenomena: 

1. Phase separation: the ground-state configuration is a mixture of a 
periodic configuration and the empty configuration, i.e., all ions are 
distributed periodically in one semi-infinite half-space, while the other half- 
space is free of ions. 

2. Formation of n-molecules: the ions form clusters where n con- 
secutive lattice sites are occupied and these clusters are most homogeneously 
distributed over the occupied half-space. 

3. Changes in conducting properties: the Fermi level is located in the 
band of the empty configuration and therefore an extra electron can be 
added at no cost in the energy. 

As the density p decreases, the following infinite sequence of phase 
diagram transformations is observed. In the first stage the weight of the 
half-space with no ions increases while the unit cell in the half-space 
occupied by the ions remains unchanged. In the second stage, at a suf- 
ficiently small density the distances between the molecules jump to a larger 
value (modification of the unit cell but not of the size of the molecules). 
Then the two stages repeat themselves until the value of the density is 
reached where a transition from n-molecules to (n + 1)-molecules occurs. 
After this transition the first two stages repeat themselves again, but now 
with ion configurations containing (n + 1)-molecules, and so on. For a 
given potential U there is a largest admissible size N(U) of the molecules 
that can be formed. After the N(U)-molecules have been formed the 
remainder of the sequence consists of the first two stages repeating them- 
selves indefinitely. 

These phertomena were interpreted as consequences of the fact that for 
small U the n-molecules have only one bound electron, the other n - 1 elec- 
trons being diffusive. The g.s.c, appears then to result from the competition 
between a strictly convex effective repulsion between the molecules and the 
pressure exerted by the "free" electrons. 
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On the other hand, for any density p, p c ( U ) < p < l - p c ( U  ), the 
ground-state configuration is periodic most homogeneous and the system is 
an insulator. Furthermore, in the plane of the chemical potentials the 
density in the neutral domain appears to follow the Aubry sequence and 
the sizes of phase domains show the devil's staircase structure. 

We pass now to the nonneutral systems. In this case we have found 
that for pe<pib(U), where b(U) is given by the construction described in 
Section 4 [while for U~> 2.65 it is given by (31)], the g.s.c, is the segregated 
configuration and the system is a conductor. The form of b(U) has been 
checked to be in agreement with our numerical results, the numerical 
results given in ref. 6, and the bounds given in ref. 13. 

For densities Pe and pi such that pib(U)< p~ < 1/2, the set of periodic 
g.s.c, decomposes mostly into sequences for which pi =npe, 1 ~ n ~ N(U). 
Given such a sequence, then for any pj between p~in(U) and p~ax(U), 
the ground state consists of n-molecules which are most homogeneously 
distributed over the lattice, with one electron per molecule. 

For general values of (pc, p~) we came to the conclusion that for any 
electron density p~=p/q, with p relatively prime to q, there are periodic 
ground states with ion densities pg=~/q, where/~ is any integer satisfying 
p'~<~p".  If p,. is such that ~/q<pi<(~+l) /q ,  the ground-state con- 
figuration is a mixture of the two phases with density ~/q and (P + 1)/q (for 
p~>p"/q it is a mixture of a periodic and the full configuration); for 
p~ <p'/q it is a mixture of a periodic and the empty configuration. In any 
case if the ground state is periodic, then the system is an insulator. 

The restricted phase diagram presents the following general properties. 
The nontrivial part of the (Fe,#~) plane, i.e., - ( U + 2 ) < / z e < 2 ,  decom- 
poses into three connected domains D , D+,  and D, corresponding, 
respectively, to the empty, full, and periodic translationally noninvariant 
configurations. The domains D_ and D+ are separated by the domain D, 
contained in the vertical stripe [ # * , - ( U + / ~ * ) ] ,  where #* = # * ( U ) <  
min{ -2 ,  -U/2} ,  and by two curves which correspond to the segregated 
phase (see Fig. 12). There are two partitions of D into connected sub- 
domains that are of importance in the analysis of the restricted phase 
diagrams. In the first partition there appear subdomains D,, where the ions 
in the g.s.c, form n-molecules with one electron per molecule (pi=npe). 
In each domain D, the ion density follows the Farey tree order (Aubry 
sequence) and the domains of distinct periodic configurations exhibit the 
devil's staircase structure. The second partition consists of the subdomains 
Dpe, where the electron density has a definite rational value p~ =p/q. These 
domains form "curved stripes" going across D from the boundary with D_ 
to the boundary with D+. The ion densities in these domains constitute the 
sequence p'/q, (p' + 1 )/q ..... p"/q, for some p' < p" that depend on p~ and U. 
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Final ly ,  we have seen that  T h e o r e m  1 of ref. 6 is par t ia l ly  incorrect  
and  at the same t ime seems to be more  general .  We  conjec ture  tha t  this 
theorem should  be valid for all U in the form: G i v e n  p c = p / q ,  with p 
relatively pr ime to q, an d  p i = ~ / q ,  then  if the g r o u n d  state is periodic,  it is 
given by the F ree r i ck s -Fa l i co v  method .  
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